Symmetrization - PowerPoint PPT Presentation

1 / 60
About This Presentation
Title:

Symmetrization

Description:

Given an explicit pairing of points , a closed form solution for ... non-linear PriMo deformation model [Botsch et al. 2006] Outline. Abstract. Introduction ... – PowerPoint PPT presentation

Number of Views:51
Avg rating:3.0/5.0
Slides: 61
Provided by: aRsh8
Category:

less

Transcript and Presenter's Notes

Title: Symmetrization


1
Symmetrization
  • Niloy J. Mitra Leonidas J. Guibas Mark
    Pauly
  • TU Vienna Stanford University ETH Zurich
  • SIGGRAPH 2007

2
Outline
  • Abstract
  • Introduction
  • Previous Work
  • Overview
  • Optimal Displacements
  • Sub-problems
  • Optimizing Sample Positions
  • Contracting Clusters
  • Merging Clusters
  • Results, Discussion and Conclusion

3
Abstract
  • Enhances symmetries of a model while minimally
    altering its shape.

4
Outline
  • Abstract
  • Introduction
  • Previous Work
  • Overview
  • Optimal Displacements
  • Sub-problems
  • Optimizing Sample Positions
  • Contracting Clusters
  • Merging Clusters
  • Results, Discussion and Conclusion

5
Introduction
  • Symmetrization
  • Goal Symmetrize 3D geometry
  • ApproachMinimally deform the model in the
    spatial domain by optimizing the destribution in
    transformation space

6
Introduction
  • Contributions
  • Given an explicit pairing of points , a closed
    form solution for symmetrizing the point set.
  • A symmetrization algorithm that uses transform
    domain reasoning to guide shape deformation in
    object domain .
  • Applications
  • Extend the types of detected symmetries
  • Symmetric remeshing

7
Outline
  • Abstract
  • Introduction
  • Previous Work
  • Overview
  • Optimal Displacements
  • Sub-problems
  • Optimizing Sample Positions
  • Contracting Clusters
  • Merging Clusters
  • Results, Discussion and Conclusion

8
Previous Work
  • Symmetry detecting
  • MITRA, N. J., GUIBAS, L. J., AND PAULY, M. 2006.
  • Partial and approximate symmetry detection for 3d
    geometry. ACM Trans.Graph

9
Previous Work
  • Symmetry detecting
  • MITRA, N. J., GUIBAS, L. J., AND PAULY, M. 2006.
    Partial and approximate symmetry detection for 3d
    geometry. ACM Trans.Graph

10
Outline
  • Abstract
  • Introduction
  • Previous Work
  • Overview
  • Optimal Displacements
  • Sub-problems
  • Optimizing Sample Positions
  • Contracting Clusters
  • Merging Clusters
  • Results, Discussion and Conclusion

11
Overview
  • 2D Example Symmetry Detection

Mitra 2006
transformation space
d
Y
?
d
?
0
X
12
Overview
  • 2D Example Symmetry Detection

transformation space
13
Overview
  • 2D Example Symmetry Detection

transformation space
pair of sample points defines reflective symmetry
transform
14
Overview
  • 2D Example Symmetry Detection

transformation space
transform domain
object domain
pair of points point
15
Overview
  • 2D Example Another point-pair

transformation space
pair of sample points defines reflective symmetry
transform
16
Overview
  • 2D Example Another point-pair votes

transformation space
17
Overview
  • 2D Example Voting continues

transformation space
18
Overview
  • 2D Example Voting continues

transformation space
19
Overview
  • 2D Example Density plot

transformation space
density plot accumulation of
symmetry evidence
20
Overview
  • 2D Example Density peaks

transformation space
density cluster reflective symmetry
21
Overview
  • 2D Example Local symmetrization

transformation space
cluster constraction
local symmetrization
22
Overview
  • 2D Example Local symmetrization

transformation space
cluster constraction
local symmetrization
23
Overview
  • 2D Example Local symmetrization

transformation space
cluster contraction in transform space
deformation in object space
24
Overview
  • 2D Example Global symmetrization

After local symmetrized
25
Overview
  • 2D Example Global symmetrization

cluster merging global
symmetrization
26
Overview
  • 2D Example Global symmetrization

cluster merging global
symmetrization
27
Overview
  • 2D Example Global symmetrization

cluster merging / contraction
global symmetrization
28
Overview
  • 2D Example Global symmetrization

cluster merging / contraction
global symmetrization
29
Overview
  • 2D Example Global symmetrization

cluster merging / contraction
global symmetrization
30
Outline
  • Abstract
  • Introduction
  • Previous Work
  • Overview
  • Optimal Displacements
  • Sub-problems
  • Optimizing Sample Positions
  • Contracting Clusters
  • Merging Clusters
  • Results, Discussion and Conclusion

31
Optimal Displacements
  • given a point pair (p,q)
  • define a unique reflective transformation T
  • if we want to move T to T
  • p,q need to be displaced by vector ,

d
T
p
p
T
T
T
q
q
?
32
Optimal Displacements
  • We derive

33
Optimal Displacements
  • Goal Find minimal displacements for a set of
    point pairs

T makes a set of point pairs symmetric with
respect to T such that qi T(pi) for all i.
34
Optimal Displacements
  • Optimal means transformation T minimizes the cost

35
Optimal Displacements
  • Optimal means transformation T minimizes the cost

36
Optimal Displacements
  • Optimal means transformation T minimizes the cost

37
Optimal Displacements
  • Optimal means transformation T minimizes the cost

38
Optimal Displacements
  • Optimal transformation (E 69.4) differs from
    the centroid of the pair transformation (E
    142.6)

39
Outline
  • Abstract
  • Introduction
  • Previous Work
  • Overview
  • Optimal Displacements
  • Sub-problems
  • Optimizing Sample Positions
  • Contracting Clusters
  • Merging Clusters
  • Results, Discussion and Conclusion

40
Sub-problems
  • Optimizing Sample Positions
  • Every sample point p will be shifted in the
    direction of its optimal displacement
  • Project them back onto the surface
  • Re-compute the optimal transformation and
    displacements vectors
  • Until the variance is no longer reduced

Iterate
41
Sub-problems
  • This reduces the variance of a cluster without
    modifying the geometry and thus leads to smaller
    subsequent deformations.

42
Sub-problems
  • Contracting Clusters
  • Optimize sample positions
  • Compute the optimal transformation
  • Apply the resulting replacements
  • New optimal displacements vectors are computed

43
Sub-problems
  • Cluster Merging

44
Sub-problems
  • Cluster Merging

45
Sub-problems
  • Cluster Merging

46
Sub-problems
  • Cluster Merging

47
Sub-problems
  • Cluster Merging

moving two points in transformation space to
their centroid
Deformation method
as-rigid-as-possibleIgarashi 2005
non-linear PriMo deformation model
Botsch et al. 2006
48
Outline
  • Abstract
  • Introduction
  • Previous Work
  • Overview
  • Optimal Displacements
  • Sub-problems
  • Optimizing Sample Positions
  • Contracting Clusters
  • Merging Clusters
  • Results and Conclusion

49
Results and Conclusion
  • Bunny

50
Results and Conclusion
  • Symmetrized Bunny

51
Results and Conclusion
  • Dragon

52
Results and Conclusion
  • Symmetrized Dragon

53
Results and Conclusion
54
Results and Conclusion
  • Symmetric Remeshing

55
Results and Conclusion
56
Results and Conclusion
57
Results and Conclusion
  • Articulated Bodies

cluster merging
58
Results and Conclusion
  • Articulated Bodies

59
Results and Conclusion
  • Bunny Feet

60
Results and Conclusion
Write a Comment
User Comments (0)
About PowerShow.com