Title: Dynamische Bioinformatik Systembiologie Teil 12
1Dynamische Bioinformatik / SystembiologieTeil 12
- Peter Dittrich
- Jenaer Centrum für Bioinfomatik und
- Friedrich-Schiller-Universität Jena
- Institut für Informatik
2Motivation
- Informationsverarbeitung mittels chemischer
Systeme findet man überall in der Natur - im Zellkern und Organellen
- in der Zelle
- zwischen Zellen
- zwischen Organen
- zwischen Organismen
- zur Steuerung/Regelung von Wachstum und
Immunabwehr - usw.
- Speichern - Übermitteln - Verarbeiten
3(No Transcript)
4Molecular Computing
- (Liberman 1972, 1979), (Conrad 1972)Disussion,
Maschinerie der Zelle für Informationsverarbeitung
zu nutzen - (Seelig Rössler 1972) chemische System als
logische Schaltung
5Chemical Computing - Chemisches Rechnen
- Informationsverarbeitung mit ChemieWir können
unterscheiden - Real Chemical Computing - Molecular
Computing(Rechnen mit realen Molekülen) - Artificial Chemical Computing(künstliches
informationsverarbeitendes System verwendet
Metaphern der Chemie)
6Welche Moleküle ?
- Enzymez.B. Bacteriorhodopsin
- Bio-Polymere (meistens DNA)
- andere, z.B BZ-Reaktion
7Prinzipien
- Mustererkennung (Docking, Anlagerung)
- räumliche Strukturbildung
- Konformationsänderung
- optische Aktivität
- chemische Kinetik
8Klassifikation nach Ebene
- macroscopicRechenprozess kann mit Hilfe von
makroskopischen Größen (z.B. Konzentration)
beschrieben werden.Bsp. Das chemische Neuron,
BZ-Reaktion - microscopicEinzelne Moleküle führen
Rechenprozess aus.Bsp. DNA Computing - mesoscopic (Wenn wir uns nicht entscheiden
können)
9Input
- Materie
- Licht
- Selektionsdruck
- Reaktionsbeziehungen
10Makroskopisches chemisches RechnenBeispiel
chemisches Neuron
nach Hjelmfelt, Weinberger, Ross 1991
11Makroskopisches chemisches RechnenBeispiel
Parität
12Makroskopisches chemisches RechnenBeispiel
Parität
13Makroskopisches chemisches RechnenBeispiel
hyperzyklischer Speicher
14Makroskopisches chemisches RechnenBeispiel
hyperzyklischer Speicher
15Makroskopisches chemisches RechnenBeispiel
hyperzyklischer Speicher
16Microscopic Mikroskopisches chemisches
RechnenBsp. DNA Computing, Variante des
Hamiltonschen Problems, Adleman 1994
17Microscopic Mikroskopisches chemisches
RechnenBsp. DNA Computing, Variante des
Hamiltonschen Problems, Adleman 1994
18Algorithmus
- Erzeuge zufällige Pfade
- Behalte Pfade, die mit v_start beginnen und mit
v_ende enden. - Behalte davon die Pfade, die genau 7 Knoten
enthalten. - Behalte die Pfade, die jeden der 7 Knoten
enthalten. - Bleibt eine Pfad übrig? Falls ja gt Antwort
JaSonst gt Antwort Nein
19Chemische Informationsverarbeitung mittels
Reaktions-Diffusions Systemen(Andrew Adamatzky,
Bristol)
20Three constituents of reaction-diffusion and
excitation
- Diffusion Molecules of reagents move randomly
due to persistent collisions with molecules of a
solvent - Reaction Molecules are created and annihilated
in the result of interaction between the reagents - Excitation Auto-catalytic reaction coupled with
molecular diffusion gives constant velocity fronts
by Andrew Adamtzky
21To implement a computation in a
reaction-diffusion medium we need to ...
- encode an algorithm into a set of reactions and
coefficients of diffusive coupling - encode data into spatial distribution of
reagents - let waves of reagents run, collide one with
another and produce a precipitate in the result
of the collisions - decode spatial distribution of the precipitate
into results of the computation
by Andrew Adamtzky
22Reaction-diffusion processors
- Computational geometry and optimisation
- Computation of Voronoi diagram
- Computation of skeleton of planar shape
- Approximation of shortest paths and spanning tree
- Navigation of robots
- Phototaxis
- Universal processors
- Collision-based computing
by Andrew Adamtzky
23Reaction-diffusion processors
- Computational geometry and optimisation
- Computation of Voronoi diagram
- Computation of skeleton of planar shape
- Approximation of shortest paths and spanning tree
- Navigation of robots
- Phototaxis
- Universal processors
- Collision-based computing
by Andrew Adamtzky
24Skeleton
- A skeleton of a planar contour is a set of
centres of bitangent circles which lie entirely
inside the contour
by Andrew Adamtzky
25Skeletonization
- project a shape onto excitable medium to excite
edges of the shape - waves of excitation spread inward the contour
- the waves interact one with another and generate
strips of a precipitate - concentration profile of the precipitate
represents segments of the skeleton
by Andrew Adamtzky
26Laboratory Prototype
- A planar contour is cut out of filter paper for
electrophoresis and saturated with FeCl3 6H2O - Agar gel mixed with the K4Fe(CN)6 3H2O forms
a planar substrate - Light blue colour is due to formation of
Fe4Fe(CN)63 precipitate
K4Fe(CN)6FeCl3 KFeFe(CN)63KCl 3KFeFe(CN)6
FeCl FeCl3 3KCl Fe4Fe(CN)63
by Andrew Adamtzky
27Voronoi diagram
Voronoi cell Given set P of planar points a
Voronoi cell of point p from P contains all
points that are close to p than to any other
point of the set P.
Voronoi diagram A union of boundaries of the
Voronoi cells of the points from P is a Voronoi
diagram of P.
by Andrew Adamtzky
28Reaction-diffusiontessellation
- We place drops of reagents at sites of the given
set - Diffusive wave spread and interact with each
other - The different reagents react and form a
precipitate - Sites that contain the precipitate represent
edges of Voronoi cells
by Andrew Adamtzky
29Laboratory Prototype
- The thin layer of agar gel mixed with palladium
chloride is a planar substrate. - Sites corresponding to planar points which must
be separated by Voronoi bisectors are supplied
with drops of potassium iodide. - The bisectors of Voronoi cells are represented
by the sites of the substrate where palladium
chloride exhausted.
PdCl22KI PdI22KCl
by Andrew Adamtzky
30Navigating Robots by Excitable Media
- How to employ an excitable medium, in the form
of a molecular array with actuators, to provide a
controller for a (nano) robot
by Andrew Adamtzky
31Ciliate Robots Distributed Phototaxis
- Every molecule of a 2D array has a propulsive
actuator - Edge molecules are light-sensitive
- The excitation is passed from one molecule to
another one
by Andrew Adamtzky
32Actuators Are Positioned by Excitation Waves
- An actuator positions itself away from the
direction of from which excitation arrives - The actuator produces a local propulsive force
by Andrew Adamtzky
33How does it work...?
- The edges molecules are excited by light
patterns of excitation travel inward the array - The waves of the excitation modifies the local
orientations of actuators - Local propulsive forces are generated by the
actuators - The interaction between the local forces and the
environment implicitly causes the rotation and
translation motion of the robot
by Andrew Adamtzky
34Dynamics of Excitations and Typology of Robot
Trajectories
Graceful motion
Cycloidal motion
Pirouette motion
Excitations Actuators
Trajectories
by Andrew Adamtzky
35- The chemical medium, constituting the controller,
is light sensitive - Micro-volumes at those edges of a reactor which
are closer to the light target are excited - They generate robust waves of excitation that
travel inward the reactor space - Velocity vectors of the wave fronts, being
inverted, indicate a direction toward the source
of light
by Andrew Adamtzky
36Typical activity patterns for 2D excitable
lattice controllers with interval-based
excitation of lattice nodes
by Andrew Adamtzky
37Examples of excitable lattices moving toward a
light source
by Andrew Adamtzky
38Laboratory Experiments
U-bot
Sensors-to-lattice coupling
The trajectory
by Andrew Adamtzky
39Literatur
- Adamatzky, A. (2002) ....
- Adleman,L. (1997)
- Hale, J. and H. Koçak (1991), Dynamics and
Bifurcations, Springer Verlag, New York - Bossel, H. (1992), Modellbildung und Simulation,
Vieweg, Braunschweig - Jetschke, G. (1989), Mathematik der
Selbstorganisation. Deutscher Verlag der
Wissenschaften, Berlin - William H. Press, Brian P. Flannery, Saul A.
Teukolsky, William T. Vetterling (1992),
Numerical Recipes in C - The Art of Scientific
Computing, Cambridge University Press, Cambridge,
UKhttp//www.nr.com/