Title: Author: Fred J' Grieman
1Magnetic Field Interaction Nuclear Magnetic
Resonance Spectroscopy
Author Fred J. Grieman
2- External Magnetic Field and Spectroscopy (K
P, 7-12) - Magnetic dipole created by motion of charge (e.g.
e- orbital motion, e- spin) - External magnetic field B k Bo(z)
(Physics of magnetic fields Physics course) - Orbital Angular Momentum
- A. Splitting of levels due to electric field
Stark Effect - B. Splitting of levels due to magnetic filed
Zeeman effect - 1) Magnetic field from small loop of current
from a large distance - magnetic dipole. E.g. Atom e- orbit ? ?L -
?LL -e/(2me)L (See MS -
magnetogyric ratio problems 6
43-46) - 2) Interaction with external magnetic field
Perturbing Hamiltonian - Hm ?L B - ?LBoLz (external field
along z axis) - ßB h?L Bohr Magneton
- Hm?atom -(ßB/h)Bo(z)MLh?atom
- -(ßB)Bo(z)ML?atom
H atom
-1 0 ml 1
E
2s,2p
Bo(z)
3II. Electron Spin Angular Momentum Analogous to
orbital ?s - ?sS -go ßBS go 2.0023
(electron g value from relativistic q. m.) In
external magnetic field Em - ? sBo (z) ms -go
ßBmsBo Interactions 1) In atom ?LL ?SS
spin-orbit coupling 2) External field ESR (EPR)
Spectroscopy of Radical species
III. Nuclear Spin (analogous to electron spin)
Spin q. I (integer or ½ integer) mI is z
component mI ?I, ?(I - 1), ?½ or 0
e.g., 1H, 13C, 19F - I ½ mI ?½
2H, 14N - I 1 mI ? 1, 0 Em
-gNßNBo(z)mI gN 1 (must be measured for
each nucleus found in table) ßN me/mNßB )
nuclear magneton 5.0508 x 10-27 JT-1
4D nucleus I 1
E
Bo(z)
IV. Nuclear Magnetic Resonance Spectroscopy Trans
itions between nuclear spin levels Selection
Rules ?mI ?1 (-1 for absorption)
Transition ?E/h ?o gN ßN Bo/h ? Bo
?o radiofrequency for typical magnetic fields ?o
? Bo, can vary either
magnet
NMR Spectrometer
Intensity
Fix ?o (400 MHz) and vary Bo Bo for
transition depends on nucleus
sample
RF Generator Detector
Bo
5Chemistry So far everything derived is for
bare nucleus In molecules, nuclei surrounded
by electrons For diamagnetic molecules, e-s
create magnetic field in opposite direction to
applied external field and proportional to
it at nucleus j -sjBo So magnetic field
at nucleus is Bj Bo(1- sj) sj depends on
e- distribution about nucleus j which depends
upon chemical bonding This is the
chemical shift!!!
E
Splitting due to Bj
So transition is now ?o ?Bj ?Bo(j)(1 -
sj) or Bo(j) ?o/(1 sj)?
Bo(z)
6Bo
Bo
Bo
low resolution
CH3OH
Bo
high resolution
Bo
B
Intensity
B(j)
Bo(1-sj)
Bo
Bo
Bo
OH
CH3
Bo(r) Bo(j) Bo(r)
Bo)
d
Bo
7Bo
Bo
Bo(H)
Bo
Bo(D)
8CH3OH is left as a homework problem Note for
intensities OH mI ?1/2 What about CH3?? 3
equivalent protons, so spins combine
MI SimI(i) of
ways ??? 3/2
1 ???, ???, ??? 1/2
3 ???, ???, ???
-1/2 3 ???
-3/2 1
CH3OH
1/2 -1/2
1/2 -1/2 3/2 -3/2
OH
CH3